The glgB-encoded glycogen branching enzyme is essential for glycogen accumulation in Corynebacterium glutamicum.
نویسندگان
چکیده
Corynebacterium glutamicum transiently accumulates glycogen as carbon capacitor during the early exponential growth phase in media containing carbohydrates. In some bacteria glycogen is synthesized by the consecutive action of ADP-glucose pyrophosphorylase (GlgC), glycogen synthase (GlgA) and glycogen branching enzyme (GlgB). GlgC and GlgA of C. glutamicum have been shown to be necessary for glycogen accumulation in this organism. However, although cg1381 has been annotated as the putative C. glutamicum glgB gene, cg1381 and its gene product have not been characterized and their role in transient glycogen accumulation has not yet been investigated. We show here that the cg1381 gene product of C. glutamicum catalyses the formation of α-1,6-glycosidic bonds in polysaccharides and thus represents a glycogen branching enzyme. RT-PCR experiments revealed glgB to be co-transcribed with glgE, probably encoding a maltosyltransferase. Promoter activity assays with the glgE promoter region revealed carbon-source-dependent expression of the glgEB operon. Characterization of the growth and glycogen content of glgB-deficient and glgB-overexpressing strains showed that the glycogen branching enzyme GlgB is essential for glycogen formation in C. glutamicum. Taken together these results suggest that an interplay of the enzymes GlgC, GlgA and GlgB is not essential for growth, but is required for synthesis of the transient carbon capacitor glycogen in C. glutamicum.
منابع مشابه
Glycogen formation in Corynebacterium glutamicum and role of ADP-glucose pyrophosphorylase.
Glycogen is generally assumed to serve as a major reserve polysaccharide in bacteria. In this work, glycogen accumulation in the amino acid producer Corynebacterium glutamicum was characterized, expression of the C. glutamicum glgC gene, encoding the key enzyme in glycogen synthesis, ADP-glucose (ADP-Glc) pyrophosphorylase, was analysed, and the relevance of this enzyme for growth, survival, am...
متن کاملInactivation of the phosphoglucomutase gene pgm in Corynebacterium glutamicum affects cell shape and glycogen metabolism
In Corynebacterium glutamicum formation of glc-1-P (α-glucose-1-phosphate) from glc-6-P (glucose-6-phosphate) by α-Pgm (phosphoglucomutase) is supposed to be crucial for synthesis of glycogen and the cell wall precursors trehalose and rhamnose. Furthermore, Pgm is probably necessary for glycogen degradation and maltose utilization as glucan phosphorylases of both pathways form glc-1-P. We here ...
متن کاملA glgC gene essential only for the first of two spatially distinct phases of glycogen synthesis in Streptomyces coelicolor A3(2).
By using a PCR approach based on conserved regions of ADP-glucose pyrophosphorylases, a glgC gene was cloned from Streptomyces coelicolor A3(2). The deduced glgC gene product showed end-to-end relatedness to other bacterial ADP-glucose pyrophosphorylases. The glgC gene is about 1,000 kb from the leftmost chromosome end and is not closely linked to either of the two glgB genes of S. coelicolor, ...
متن کاملRoles of maltodextrin and glycogen phosphorylases in maltose utilization and glycogen metabolism in Corynebacterium glutamicum.
Corynebacterium glutamicum transiently accumulates large amounts of glycogen, when cultivated on glucose and other sugars as a source of carbon and energy. Apart from the debranching enzyme GlgX, which is required for the formation of maltodextrins from glycogen, alpha-glucan phosphorylases were assumed to be involved in glycogen degradation, forming alpha-glucose 1-phosphate from glycogen and ...
متن کاملIdentification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties.
Current evidence suggests that a few global regulatory factors mediate many of the extensive changes in gene expression that occur as Escherichia coli enters the stationary phase. One of the metabolic pathways that is transcriptionally activated in the stationary phase is the pathway for biosynthesis of glycogen. To identify factors that regulate glycogen biosynthesis in trans, a collection of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 157 Pt 11 شماره
صفحات -
تاریخ انتشار 2011